M1. (a)	To reduce any Fe³⁺ ions to Fe²⁺ ions	
	Allow 'to ensure that all of the iron present is in the form of Fe²+ ions' or 'to ensure that no Fe³+ ions are present'.	1
(b)	Zinc would react with MnO₄⁻ / Fe³⁺ produced in titration Do not allow 'would increase titre value'. Do not allow 'zinc would react' without further qualification.	1 [2]
M2. (a)	(i) Flask with side arm	1
	Buchner funnel <u>and</u> horizontal filter paper Allow Hirsch funnel and horizontal filter paper. Do not allow standard Y-shaped funnel. If there is not a clear air-tight seal (labelled or drawn) between the funnel and the flask maximum 1 mark.	1
	(ii) <i>M</i> [,] KMnO₄ = 158(.0)	1
	Mass = 0.225 × 158 / 3 = 11.9 (g) Lose M2 if no working shown. Allow consequential mark on an incorrect M, for KMnO₄	1
	Precision mark: three significant figures Allow if mass incorrect.	1

		(iii) (Unpleasant) taste Ignore smell.	1	L
	(b)	Difficult to see meniscus / line on graduated flask Do not allow reference to over filling.	1	ا [7]
M3. (a)	2MnO₄	 + 16H⁺ + 5C₂O_{4^{2−}} → 2Mn²⁺ + 8H₂O + 10CO₂ For all species correct / moles and species correct but charge incorrect 	1	
		For balanced equation including all charges (also scores first mark)	1	
	(b)	<u>Manganate(VII) ions</u> are <u>coloured</u> (purple)	1	
		All other reactants and products are not coloured (or too faintly coloured to a Allow (all) other species are colourless Allow Mn ²⁺ are colourless / becomes colourless / pale pink	detect) 1	
	(c)	The catalyst for the reaction is a reaction product	1	
		Reaction starts off slowly / gradient shallow	1	
		Then gets faster/rate increases / gradient increases Allow concentration of MnO₄ decreases faster / falls rapidly	1	

Page 3

(d) Mn^{2*} ions Allow Mn^{3*} ions 1 (e) $MnO_{4^{-}} + 8H^{*} + 4Mn^{2*} \rightarrow 5Mn^{3*} + 4H_2O$ Allow multiples 1

1

[10]

 $2Mn^{\scriptscriptstyle 3^{\scriptscriptstyle +}} \textbf{+} C_{\scriptscriptstyle 2}O_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 2^{\scriptscriptstyle -}} \longrightarrow 2Mn^{\scriptscriptstyle 2^{\scriptscriptstyle +}} \textbf{+} 2CO_{\scriptscriptstyle 2}$

M4.(a) Stop the formation of MnO₂ / Ensures all MnO₄⁻ reacts to form Mn²⁺ / becomes colourless 1 (b) Weak acid / Does not supply sufficient H⁺ 1 It is self-indicating / Purple to colourless end-point or vice versa (c) If colours mentioned they must be correct. 1 [3] **M5.**(a) Manganate would oxidise / react with Cl-1 Because E° for MnO₄⁻ is more positive than that for Cl² / 1.51 – 1.36 = +0.15 (V)

(b)	Moles of H ⁺ = 25 × 0.0200 × 8 / 1000 = 4.00 × 10 ⁻³	1
	Moles of H ₂ SO ₄ = 2.00 × 10 ⁻³ (4.00 × 10 ⁻³ / 2) Allow consequential marking on incorrect moles of H ⁺	1
	 Volume H₂SO₄ = 4.00 (cm³) (2.00 × 10⁻³ × 1000 / 0.500) Allow consequential marking on incorrect moles of H₂SO₄ Accept 4 cm³. 8 cm³ scores 2 marks. Do not penalise precision. Correct answer without working scores M3 only. 	1
(c)	 (i) MnO₄⁻ + 4H⁺ + 3e⁻ → MnO₂ + 2H₂O Allow multiples, including fractions. Ignore state symbols. 	1
	(ii) Can't see end point due to brown colour	1
	<u>Larger</u> titre (than expected) Allow the idea that with two reactions can't make use of titre in calculations. Do not allow 'an inaccurate result' without qualification.	1
(d)	Solution (very) dilute / lots of water	1

[9]

M6.(a)For reactions 1 to 3 must show complex ions as reactants and products Take care to look for possible identification on flow chart

Reaction 1

ammonia solution

1

1

1

W is [Co(NH₃)₆]²⁺

$$\begin{split} [Co(H_2O)_6]^{2*} + 6NH_3 & \rightarrow [Co(NH_3)_6]^{2*} + 6H_2O \\ Correct \ equation \ scores \ all \ 3 \ marks \end{split}$$

Reaction 2

Allow oxygen, Do not allow air

 H_2O_2

1

1

X is [Co(NH₃)₆]³⁺

 $\begin{aligned} & 2[\text{Co}(\text{NH}_3)_6]^{2*} + \text{H}_2\text{O}_2 \rightarrow 2[\text{Co}(\text{NH}_3)_6]^{3*} + 2\text{OH}^- \\ & Allow \ 2[\text{Co}(\text{NH}_3)_6]^{2*} + \frac{1}{2}\text{O}_2 + H_2\text{O} \rightarrow 2[\text{Co}(\text{NH}_3)_6]^{3*} + 2\text{OH}^- \\ & \text{Correct equations score all 3 marks} \end{aligned}$

1

Reaction 3

HCI

Do not allow C⊦ but mark on

1

 \mathbf{Y} is $[CoCl_4]^{2-}$

$[\text{Co}(\text{H}_2\text{O})_6]^{2*} + 4\text{Cl}^- \rightarrow [\text{Co}\text{Cl}_4]^{2*} + 6\text{H}_2\text{O}/$
Correct equation scores previous mark
$[Co(H_2O)_6]^{2*} + 4HCI \rightarrow [CoCl_4]^{2*} + 6H_2O + 4H_*$ This equation scores all three marks

Reaction 4

Na₂CO₃ Or NaOH/NH₃ Do not allow CaCO₃ as a reagent but mark on

Z is CoCO₃ Co(OH)₂/Co(H₂O)₄(OH)₂

1

1

1

1

$[Co(H_2O)_6]^{2+} + CO_3^{2-} \rightarrow CoCO_3 + 6H_2O$	[Co(H₂O) ₆] ²⁺ + 2OH ⁻ →
	$Co(H_2O)_4(OH)_2 + 2H_2O$ etc
Allow waters to stay co-ordinated to Co. This mark a previous mark	

Or
$$[Co(H_2O)_{\theta}]^{2*}$$
 + Na₂CO₃ \rightarrow CoCO₃ + 6H₂O + 2Na^{*}
Allow Co^{2*} + CO₃^{2*} \rightarrow CoCO₃

1

(b) $SO_{3^{2}} + \frac{1}{2}O_{2} \rightarrow SO_{4^{2}}$ Allow multiples

1

The activation energy is lower (for the catalysed route) Or Co³⁺ attracts SO³/Co²⁺ attracts SO³/oppositely charged ions attract

 $1/_2O_2$ + 2Co²⁺ + 2H⁺ \rightarrow H₂O + 2Co³⁺

1

$\begin{array}{l} 2Co^{_{3^{\ast}}}+SO_{_{3}}{}^{_{2^{\ast}}}+H_{_{2}}O \rightarrow 2Co^{_{2^{\ast}}}+SO_{_{4}}{}^{_{2^{\ast}}}+2H^{_{4}}\\ \\ \ \ Allow \ these \ equations \ in \ either \ order \end{array}$

[16]

1